Spinor regular ternary quadratic lattices

Anna Haensch
Duquesne ${ }^{1}$ University
Joint work with Andy Earnest

Computational Challenges in the Theory of Lattices
ICERM
27 April 2018
${ }^{1}$ doo-KANE

A rational polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ represents an integer a if

$$
f\left(x_{1}, \ldots, x_{n}\right)=a
$$

has a solution with x_{1}, \ldots, x_{n} integers.

A rational polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ represents an integer a if

$$
f\left(x_{1}, \ldots, x_{n}\right)=a
$$

has a solution with x_{1}, \ldots, x_{n} integers.

The Representation Problem
Can we determine the set of all integers represented by f ?

Hilbert's 10th Problem, 1900
To devise a process according to which it can be determined in a finite number of operations whether a given Diophantine equation is solvable in rational integers.

Hilbert's 10th Problem, 1900
To devise a process according to which it can be determined in a finite number of operations whether a given Diophantine equation is solvable in rational integers.

Matiyasevich (1970) \rightarrow no general solution exists.

Theorem (Siegel, 1972)

For f quadratic, there exists a number C depending on a and f, such that if $f\left(x_{1}, \ldots, x_{n}\right)=a$ has an integer solution, then it must have one with

$$
\max _{i \leq i \leq a}\left|x_{i}\right| \leq C
$$

Theorem (Siegel, 1972)

For f quadratic, there exists a number C depending on a and f, such that if $f\left(x_{1}, \ldots, x_{n}\right)=a$ has an integer solution, then it must have one with

$$
\max _{i \leq i \leq a}\left|x_{i}\right| \leq C
$$

tl ; $\mathrm{dr} \rightarrow$ it's possible, but totally impractical.

Theorem (Hasse, 1920)
For f quadratic, the equation

$$
f\left(x_{1}, \ldots, x_{n}\right)=a
$$

has a rational solution if and only if has a solution over \mathbb{Q}_{p} for every prime p, and over \mathbb{R}.

Theorem (Hasse, 1920)
For f quadratic, the equation

$$
f\left(x_{1}, \ldots, x_{n}\right)=a
$$

has a rational solution if and only if has a solution over \mathbb{Q}_{p} for every prime p, and over \mathbb{R}.

\rightarrow Local-Global Principle

Example 1:

Let f be the quadratic equation

$$
f(x, y)=x^{2}+11 y^{2} .
$$

Example 1:

Let f be the quadratic equation

$$
f(x, y)=x^{2}+11 y^{2}
$$

Then

$$
\left(\frac{1}{2}\right)^{2}+11\left(\frac{1}{2}\right)^{2}=\frac{12}{4}=3
$$

Example 1:

Let f be the quadratic equation

$$
f(x, y)=x^{2}+11 y^{2}
$$

Then

$$
\left(\frac{1}{2}\right)^{2}+11\left(\frac{1}{2}\right)^{2}=\frac{12}{4}=3
$$

and

$$
\left(\frac{4}{3}\right)^{2}+11\left(\frac{1}{3}\right)^{2}=\frac{27}{9}=3
$$

Example 1:

Let f be the quadratic equation

$$
f(x, y)=x^{2}+11 y^{2} .
$$

Then

$$
\left(\frac{1}{2}\right)^{2}+11\left(\frac{1}{2}\right)^{2}=\frac{12}{4}=3
$$

and

$$
\left(\frac{4}{3}\right)^{2}+11\left(\frac{1}{3}\right)^{2}=\frac{27}{9}=3
$$

but clearly $f(x, y)=3$ has no integral solution.

The Big Question:
To what extent does an integral local-global principle hold? When does it fail? And why? And how badly?

The General Setup

A quadratic polynomial $f(\vec{x})$ can be written as

$$
f(\vec{x})=q(\vec{x})+\ell(\vec{x})+c
$$

where

- q is a homogeneous quadratic.
- ℓ is a homogeneous linear.
- c is a constant.

The General Setup

A quadratic polynomial $f(\vec{x})$ can be written as

$$
f(\vec{x})=q(\vec{x})+\ell(\vec{x})
$$

where

- q is a homogeneous quadratic.
- ℓ is a homogeneous linear.
- ϵ is a constant.

The Homogeneous Case

The Homogeneous Case

For $f(\vec{x})=q(\vec{x})$ homogeneous (positive definite), define

$$
L=\left(\mathbb{Z}^{n}, q\right)
$$

Then L is a quadratic lattice, and

$$
q(L)=\left\{a \in \mathbb{N}: f\left(x_{1}, \ldots, x_{n}\right)=a \text { has a solution in } \mathbb{Z}^{n}\right\} .
$$

The Homogeneous Case

For $f(\vec{x})=q(\vec{x})$ homogeneous (positive definite), define

$$
L=\left(\mathbb{Z}^{n}, q\right)
$$

Then L is a quadratic lattice, and

$$
q(L)=\left\{a \in \mathbb{N}: f\left(x_{1}, \ldots, x_{n}\right)=a \text { has a solution in } \mathbb{Z}^{n}\right\}
$$

For p prime, define the local lattice as

$$
L_{p}=L \otimes_{\mathbb{Z}} \mathbb{Z}_{p}
$$

and $q\left(L_{p}\right)$ accordingly.

For a quadratic lattice $L=\left(\mathbb{Z}^{n}, q\right)$ and $V=\mathbb{Q} L$,

- the class of L is given by

$$
\operatorname{cls}(L)=O(V) \cdot L
$$

For a quadratic lattice $L=\left(\mathbb{Z}^{n}, q\right)$ and $V=\mathbb{Q} L$,

- the class of L is given by

$$
\operatorname{cls}(L)=O(V) \cdot L
$$

- the spinor genus of L is given by

$$
\operatorname{spn}(L)=O^{+}(V) O_{\mathbb{A}}^{\prime}(L) \cdot L
$$

where $O^{\prime}\left(V_{p}\right)$ is the kernel of the spinor norm map, θ,

For a quadratic lattice $L=\left(\mathbb{Z}^{n}, q\right)$ and $V=\mathbb{Q} L$,

- the class of L is given by

$$
\operatorname{cls}(L)=O(V) \cdot L
$$

- the spinor genus of L is given by

$$
\operatorname{spn}(L)=O^{+}(V) O_{\mathbb{A}}^{\prime}(L) \cdot L
$$

where $O^{\prime}\left(V_{p}\right)$ is the kernel of the spinor norm map, θ,

- the genus of L is given by

$$
\operatorname{gen}(L)=O_{\mathbb{A}}(V) \cdot L
$$

For a quadratic lattice $L=\left(\mathbb{Z}^{n}, q\right)$ and $V=\mathbb{Q} L$,

- the class of L is given by

$$
\operatorname{cls}(L)=O(V) \cdot L=\{M \subseteq V: M \cong L\}
$$

- the spinor genus of L is given by

$$
\operatorname{spn}(L)=O^{+}(V) O_{\mathbb{A}}^{\prime}(L) \cdot L
$$

where $O^{\prime}\left(V_{p}\right)$ is the kernel of the spinor norm map, θ,

- the genus of L is given by

$$
\operatorname{gen}(L)=O_{\mathbb{A}}(V) \cdot L=\left\{M \subseteq V: M_{p} \cong L_{p} \text { for all } p\right\}
$$

Similarly to $q(L)$, define

- $q(\operatorname{spn}(L))=$ the set of integers represented by $M \in \operatorname{spn}(L)$.
- $q(\operatorname{gen}(L))=$ the set of integers represented by $M \in \operatorname{gen}(L)$.

Similarly to $q(L)$, define

- $q(\operatorname{spn}(L))=$ the set of integers represented by $M \in \operatorname{spn}(L)$.
- $q(\operatorname{gen}(L))=$ the set of integers represented by $M \in \operatorname{gen}(L)$.

A nice integral local global principle would look like

$$
" a \in q(\operatorname{gen}(L)) \Longleftrightarrow a \in q(L) "
$$

Similarly to $q(L)$, define

- $q(\operatorname{spn}(L))=$ the set of integers represented by $M \in \operatorname{spn}(L)$.
- $q(\operatorname{gen}(L))=$ the set of integers represented by $M \in \operatorname{gen}(L)$.

A nice integral local global principle would look like

$$
" a \in q(\operatorname{gen}(L)) \Longleftrightarrow a \in q(L) "
$$

...but that would be incorrect (recall example 1).

Example 2:

Let L be the lattice with quadratic map

$$
q(x, y, z)=x^{2}+y^{2}+z^{2}
$$

Example 2:

Let L be the lattice with quadratic map

$$
q(x, y, z)=x^{2}+y^{2}+z^{2}
$$

then

$$
q(L)=\left\{n \in \mathbb{N}: n \neq 4^{a}(8 b+7) \text { for } a, b \in \mathbb{Z}\right\} .
$$

Example 2:

Let L be the lattice with quadratic map

$$
q(x, y, z)=x^{2}+y^{2}+z^{2}
$$

then

$$
q(L)=\left\{n \in \mathbb{N}: n \neq 4^{a}(8 b+7) \text { for } a, b \in \mathbb{Z}\right\} .
$$

Here,

$$
\operatorname{gen}(L)=\operatorname{spn}(L)=\operatorname{cls}(L)
$$

so clearly

$$
q(\operatorname{gen}(L))=q(L)
$$

The Big Question:
Under what conditions does

$$
q(\operatorname{gen}(L))=q(L)
$$

hold?

The Big Question:
Under what conditions does

$$
q(\operatorname{gen}(L))=q(L)
$$

hold? And if it fails, why, and where, and how badly?

The Big Question:
Under what conditions does

$$
q(\operatorname{spn}(L))=q(L)
$$

hold? And if it fails, why, and where, and how badly?

Theorem (Kloosterman, 1926, Tartakowsky, 1929)
For positive definite L with $r k(L) \geq 4$ then

$$
a \in \operatorname{gen}(L) \Longleftrightarrow a \in q(L)
$$

provided that $a \gg 0$ (and $p^{s} \nmid a$ for p anisotropic when $n=4$).

Theorem (Kloosterman, 1926, Tartakowsky, 1929)
For positive definite L with $r k(L) \geq 4$ then

$$
a \in \operatorname{gen}(L) \Longleftrightarrow a \in q(L)
$$

provided that $a \gg 0$ (and $p^{s} \nmid a$ for p anisotropic when $n=4$).

- Hsia, Kneser Kitaoka (1977): Gave computable constant

$$
a \in \operatorname{gen}(L) \Longleftrightarrow a \in q(L) \text { if } a \gg C .
$$

Theorem (Kloosterman, 1926, Tartakowsky, 1929)
For positive definite L with $r k(L) \geq 4$ then

$$
a \in \operatorname{gen}(L) \Longleftrightarrow a \in q(L)
$$

provided that $a \gg 0$ (and $p^{s} \nmid a$ for p anisotropic when $n=4$).

- Hsia, Kneser Kitaoka (1977): Gave computable constant

$$
a \in \operatorname{gen}(L) \Longleftrightarrow a \in q(L) \text { if } a \gg C .
$$

- Icaza (1999): Made C effective.

Theorem (Duke, Schulze-Pillot, 1990)
For positive definite L with $r k(L)=3$,

$$
a \in^{*} q(\operatorname{spn}(L)) \Longleftrightarrow a \in q(L)
$$

provided that $a \gg 0$.

What might the genus look like?

What might the genus look like?

Class Number One

Spinor-Class Number One

Single Spinor Genus

Worst Case Scenario

Theorem (Earnest, Hsia, 1991)
For a positive-definite lattice L with rank $n \geq 5$,

$$
\operatorname{gen}(L)=\operatorname{cls}(L) \Longleftrightarrow \operatorname{spn}(L)=c \operatorname{s}(L)
$$

Theorem (Earnest, Hsia, 1991)
For a positive-definite lattice L with rank $n \geq 5$,

$$
\operatorname{gen}(L)=\operatorname{cls}(L) \Longleftrightarrow \operatorname{spn}(L)=c \operatorname{cs}(L)
$$

Class Number One

Spinor-Class Number One

Goal 1:

Goal 1:

To classify all lattices which are regular, that is

$$
q(\operatorname{gen}(L))=q(L)
$$

Goal 1:

To classify all lattices which are regular, that is

$$
q(\operatorname{gen}(L))=q(L)
$$

and spinor regular, that is,

$$
q(\operatorname{spn}(L))=q(L) .
$$

When $r k(L) \geq 4$, there are infinitely many regular forms.

Theorem (Jagy, Kaplansky, Schiemann, 1997)
There are at most 913 regular ternary lattices, that is, lattices for which

$$
q(\operatorname{gen}(L))=q(L)
$$

Theorem (Jagy, Kaplansky, Schiemann, 1997)
There are at most 913 regular ternary lattices, that is, lattices for which

$$
q(\operatorname{gen}(L))=q(L)
$$

- Jagy, Kaplansky, Schiemann, 1997: Confirmed 891 of them to be regular.

Theorem (Jagy, Kaplansky, Schiemann, 1997)
There are at most 913 regular ternary lattices, that is, lattices for which

$$
q(\operatorname{gen}(L))=q(L)
$$

- Jagy, Kaplansky, Schiemann, 1997: Confirmed 891 of them to be regular.
- Oh, 2011: Confirmed 8 more on the list.

Theorem (Jagy, Kaplansky, Schiemann, 1997)

There are at most 913 regular ternary lattices, that is, lattices for which

$$
q(\operatorname{gen}(L))=q(L)
$$

- Jagy, Kaplansky, Schiemann, 1997: Confirmed 891 of them to be regular.
- Oh, 2011: Confirmed 8 more on the list.
- Lemke Oliver, 2015: Confirmed remaining 14 assuming GRH.

Theorem (Jagy, 2004)
There are 29 spinor regular ternary lattices which aren't regular, that is, lattices for which

$$
q(\operatorname{gen}(L)) \neq q(\operatorname{spn}(L))=q(L)
$$

for which $d L<575,000$.

Theorem (Jagy, 2004)
There are 29 spinor regular ternary lattices which aren't regular, that is, lattices for which

$$
q(\operatorname{gen}(L)) \neq q(\operatorname{spn}(L))=q(L)
$$

for which $d L<575,000$.

Theorem (Earnest, H-, 2017)
Jagy's list is complete.

The Watson Transformation

For an odd prime p and

$$
L_{p} \cong\left\langle a, p^{\beta} b, p^{\gamma} c\right\rangle
$$

with $a, b, c \in \mathbb{Z}_{p}^{\times}$and $\beta \leq \gamma$, define

$$
\left(\lambda_{p}(L)\right)_{p}= \begin{cases}\left\langle a, b, p^{\gamma-2} c\right\rangle & \text { if } \beta=0 \\ \left\langle b, p^{\beta-1} a, p^{\gamma-1} c\right\rangle & \text { if } \beta=1 \\ \left\langle a, p^{\beta-2} b, p^{\gamma-2} c\right\rangle & \text { if } \beta \geq 2\end{cases}
$$

The Watson Transformation

For an odd prime p and

$$
L_{p} \cong\left\langle a, p^{\beta} b, p^{\gamma} c\right\rangle
$$

with $a, b, c \in \mathbb{Z}_{p}^{\times}$and $\beta \leq \gamma$, define

$$
\left(\lambda_{p}(L)\right)_{p}= \begin{cases}\left\langle a, b, p^{\gamma-2} c\right\rangle & \text { if } \beta=0 \\ \left\langle b, p^{\beta-1} a, p^{\gamma-1} c\right\rangle & \text { if } \beta=1 \\ \left\langle a, p^{\beta-2} b, p^{\gamma-2} c\right\rangle & \text { if } \beta \geq 2\end{cases}
$$

Two key observations:

The Watson Transformation

For an odd prime p and

$$
L_{p} \cong\left\langle a, p^{\beta} b, p^{\gamma} c\right\rangle
$$

with $a, b, c \in \mathbb{Z}_{p}^{\times}$and $\beta \leq \gamma$, define

$$
\left(\lambda_{p}(L)\right)_{p}= \begin{cases}\left\langle a, b, p^{\gamma-2} c\right\rangle & \text { if } \beta=0 \\ \left\langle b, p^{\beta-1} a, p^{\gamma-1} c\right\rangle & \text { if } \beta=1 \\ \left\langle a, p^{\beta-2} b, p^{\gamma-2} c\right\rangle & \text { if } \beta \geq 2\end{cases}
$$

Two key observations:

- For $q \neq p,\left(\lambda_{p}(L)\right)_{q}=L_{q}^{u}$ for $u \in \mathbb{Z}_{q}^{\times}$.

The Watson Transformation

For an odd prime p and

$$
L_{p} \cong\left\langle a, p^{\beta} b, p^{\gamma} c\right\rangle
$$

with $a, b, c \in \mathbb{Z}_{p}^{\times}$and $\beta \leq \gamma$, define

$$
\left(\lambda_{p}(L)\right)_{p}= \begin{cases}\left\langle a, b, p^{\gamma-2} c\right\rangle & \text { if } \beta=0 \\ \left\langle b, p^{\beta-1} a, p^{\gamma-1} c\right\rangle & \text { if } \beta=1 \\ \left\langle a, p^{\beta-2} b, p^{\gamma-2} c\right\rangle & \text { if } \beta \geq 2\end{cases}
$$

Two key observations:

- For $q \neq p,\left(\lambda_{p}(L)\right)_{q}=L_{q}^{u}$ for $u \in \mathbb{Z}_{q}^{\times}$.
$-\operatorname{ord}_{p}\left(d \lambda_{p}(L)\right)=\operatorname{ord}_{p}(d L)-1,2,4$

The Preservation of Regularity

A lattice L is said to behave well if

$$
2 p^{2} \nmid d L \text { and } L \text { is not split by } \mathbb{H}
$$

The Preservation of Regularity

A lattice L is said to behave well if

$$
2 p^{2} \nmid d L \text { and } L \text { is not split by } \mathbb{H}
$$

Theorem (Chan, Earnest, 2004)
For spinor regular lattice L,

- If L behaves well at every prime then L is regular.

The Preservation of Regularity

A lattice L is said to behave well if

$$
2 p^{2} \nmid d L \text { and } L \text { is not split by } \mathbb{H}
$$

Theorem (Chan, Earnest, 2004)
For spinor regular lattice L,

- If L behaves well at every prime then L is regular.
- If $\operatorname{ord}_{p}(d L) \geq r_{p}$ then L does not behave well.

The Preservation of Regularity

A lattice L is said to behave well if

$$
2 p^{2} \nmid d L \text { and } L \text { is not split by } \mathbb{H}
$$

Theorem (Chan, Earnest, 2004)
For spinor regular lattice L,

- If L behaves well at every prime then L is regular.
- If $\operatorname{ord}_{p}(d L) \geq r_{p}$ then L does not behave well.
- If L does not behave well, then $\lambda_{p}(L)$ is spinor regular.

The Preservation of Regularity

A lattice L is said to behave well if

$$
2 p^{2} \nmid d L \text { and } L \text { is not split by } \mathbb{H}
$$

Theorem (Chan, Earnest, 2004)
For spinor regular lattice L,

- If L behaves well at every prime then L is regular.
- If $\operatorname{ord}_{p}(d L) \geq r_{p}$ then L does not behave well.
- If L does not behave well, then $\lambda_{p}(L)$ is spinor regular.
- There exists L^{\prime} with $\operatorname{ord}_{p}\left(d L^{\prime}\right)=\operatorname{ord}_{p}(d L)$ and L^{\prime} behaves well at all $q \neq p$.

The Reduction

Suppose L is spinor regular and

$$
d L=p_{1}^{a_{a}} \cdots p_{k}^{a_{k}}
$$

The Reduction

Suppose L is spinor regular and

$$
d L=p_{1}^{a_{a}} \cdots p_{k}^{a_{k}}
$$

For each p_{i} replace L with L^{\prime}, then either

The Reduction

Suppose L is spinor regular and

$$
d L=p_{1}^{a_{a}} \cdots p_{k}^{a_{k}}
$$

For each p_{i} replace L with L^{\prime}, then either
L^{\prime} behaves well at $p_{i} \Longrightarrow L^{\prime}$ is regular

The Reduction

Suppose L is spinor regular and

$$
d L=p_{1}^{a_{a}} \cdots p_{k}^{a_{k}}
$$

For each p_{i} replace L with L^{\prime}, then either

$$
L^{\prime} \text { behaves well at } p_{i} \Longrightarrow L^{\prime} \text { is regular }
$$

or
L^{\prime} not behaves well at $p_{i} \Longrightarrow \lambda_{p_{i}}\left(L^{\prime}\right)$ is spinor regular

The Reduction

Suppose L is spinor regular and

$$
d L=p_{1}^{a_{a}} \cdots p_{k}^{a_{k}}
$$

For each p_{i} replace L with L^{\prime}, then either

$$
L^{\prime} \text { behaves well at } p_{i} \Longrightarrow L^{\prime} \text { is regular }
$$

or

$$
\begin{aligned}
L^{\prime} \text { not behaves well at } p_{i} & \Longrightarrow \lambda_{p_{i}}\left(L^{\prime}\right) \text { is spinor regular } \\
& \vdots \\
& \Longrightarrow \lambda_{p_{i}}^{\delta}\left(L^{\prime}\right) \text { is regular }
\end{aligned}
$$

The Reduction

Suppose L is spinor regular and

$$
d L=p_{1}^{a_{a}} \cdots p_{k}^{a_{k}}
$$

For each p_{i} replace L with L^{\prime}, then either

$$
L^{\prime} \text { behaves well at } p_{i} \Longrightarrow L^{\prime} \text { is regular }
$$

or

$$
\begin{aligned}
L^{\prime} \text { not behaves well at } p_{i} & \Longrightarrow \lambda_{p_{i}}\left(L^{\prime}\right) \text { is spinor regular } \\
& \vdots \\
& \Longrightarrow \lambda_{p_{i}}^{\delta}\left(L^{\prime}\right) \text { is regular }
\end{aligned}
$$

Therefore,

$$
p_{i} \in\{2,3,5,7,11,13,17,23\}
$$

The Reduction

For any odd pair, $p \cdot q$, do the same trick then

$$
p \cdot q \in\{3 \cdot 5,3 \cdot 7,3 \cdot 11,3 \cdot 13,5 \cdot 7,11 \cdot 13\}
$$

The Reduction

For any odd pair, $p \cdot q$, do the same trick then

$$
p \cdot q \in\{3 \cdot 5,3 \cdot 7,3 \cdot 11,3 \cdot 13,5 \cdot 7,11 \cdot 13\}
$$

and any triple must be of the form

$$
2 \cdot p \cdot q
$$

with $p \cdot q$ coming from above.

The "Skip 4" Method

Lemma

For a prime p with $t>r_{p}$ and $\operatorname{gcd}(p, m)=1$, if

$$
p^{t} m, p^{t+1} m, p^{t+2} m \text { and, } p^{t+3} m
$$

are not regular or spinor regular discriminants, then

$$
p^{t_{0}} m
$$

is not a spinor regular discriminant for any $t_{0}>t$.

Discriminant Elimination

Suppose L is spinor regular but not regular with $d L=2^{k} \cdot 17^{m}$, and

$$
L_{17} \cong\left\langle a, 17^{\beta} b, 17^{\gamma} c\right\rangle
$$

If $\beta+\gamma>2$ then

$$
\left(\lambda_{17}^{\delta}(L)\right)_{17}=\left\langle a, 17^{\beta^{\prime}} b, 17^{\gamma^{\prime}} c\right\rangle
$$

is spinor regular where $\beta^{\prime}+\gamma^{\prime}=1,2$.

Discriminant Elimination

Suppose L is spinor regular but not regular with $d L=2^{k} \cdot 17^{m}$, and

$$
L_{17} \cong\left\langle a, 17^{\beta} b, 17^{\gamma} c\right\rangle
$$

If $\beta+\gamma>2$ then

$$
\left(\lambda_{17}^{\delta}(L)\right)_{17}=\left\langle a, 17^{\beta^{\prime}} b, 17^{\gamma^{\prime}} c\right\rangle
$$

is spinor regular where $\beta^{\prime}+\gamma^{\prime}=1,2$.

$$
\rightarrow \text { appeal to JKS list of } 913 .
$$

Discriminant Elimination

Suppose L is spinor regular but not regular with $d L=3^{k} \cdot 7^{m}$.

Discriminant Elimination

Suppose L is spinor regular but not regular with $d L=3^{k} \cdot 7^{m}$.

$3^{k} \cdot 7^{m}$	7	7^{2}	7^{3}	7^{4}	7^{5}	7^{6}
3	d_{r}	d_{r}	-	-	-	-
3^{2}	d_{r}	d_{r}	-	-	-	-
3^{3}	d_{r}	d_{r}	-	-	-	$*$
3^{4}	-	-	-	-	$*$	$*$
3^{5}	-	-	-	$*$	$*$	$*$
3^{6}	-	-	-	$*$	$*$	$*$
3^{7}	-	-	$*$	$*$	$*$	$*$

$$
\begin{aligned}
d_{r} & =\text { discriminant of a regular form } \\
* & =\text { product greater than } 575,000 \\
r_{3} & =5 \\
r_{7} & =2
\end{aligned}
$$

Goal 2:

Goal 2:

To classify all lattices with class number 1, that is,

$$
\operatorname{gen}(L)=c l s(L)
$$

Goal 2:

To classify all lattices with class number 1, that is,

$$
\operatorname{gen}(L)=c l s(L)
$$

and spinor class number 1 , that is,

$$
\operatorname{spn}(L)=\operatorname{gen}(L)
$$

\square

Theorem (Kirshmer, Lorch, 2013)
An enumeration of all positive definite L with

$$
\operatorname{gen}(L)=\operatorname{spn}(L)=\operatorname{cls}(L)
$$

that is, L has class number 1 .

Theorem (Earnest, H-, 2017)
There are 27 ternary forms, for which

$$
\operatorname{gen}(L) \neq \operatorname{spn}(L)=\operatorname{cls}(L)
$$

that is, L has spinor class number 1 , but L has class number greater than 1.

Theorem (Earnest, H-, 2018)
There is only one quaternary form,

$$
q(x, y, z, w)=x^{2}+x y+7 y^{2}+3 z^{2}+3 z w+3 w^{2}
$$

which has spinor class number 1, but class number greater than 1.

Algorithm (Earnest, Nipp, 1991)
INPUT: A prime p and a lattice discriminant D.
OUTPUT: List of isometry class representatives for lattices with discriminant $p^{2} D$.

Algorithm (Earnest, Nipp, 1991)

INPUT: A prime p and a lattice discriminant D.
OUTPUT: List of isometry class representatives for lattices with discriminant $p^{2} D$.

1 Let \mathcal{P} be the set of all matrices

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & p
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & p & a \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & p & a & b \\
0 & 0 & 1 & a \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
p & a & b & c \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & a \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where $a, b, c<p$ non-negative integers.

Algorithm (Earnest, Nipp, 1991)

INPUT: A prime p and a lattice discriminant D.
OUTPUT: List of isometry class representatives for lattices with discriminant $p^{2} D$.

1 Let \mathcal{P} be the set of all matrices

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & p
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & p & a \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & p & a & b \\
0 & 0 & 1 & a \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
p & a & b & c \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & a \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where $a, b, c<p$ non-negative integers.
2 For $A \in \mathcal{D}$ a set of representative lattices of discriminant D, and for $P \in \mathcal{P}$, compute

$$
P^{t} A P
$$

Algorithm (Earnest, Nipp, 1991)

INPUT: A prime p and a lattice discriminant D.
OUTPUT: List of isometry class representatives for lattices with discriminant $p^{2} D$.

1 Let \mathcal{P} be the set of all matrices

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & p
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & p & a \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & p & a & b \\
0 & 0 & 1 & a \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
p & a & b & c \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & a \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where $a, b, c<p$ non-negative integers.
2 For $A \in \mathcal{D}$ a set of representative lattices of discriminant D, and for $P \in \mathcal{P}$, compute

$$
P^{t} A P
$$

3 Reduce the set of all $P^{t} A P$ up to isometry.

The Computational Tools

- The lattices of class number 1 are stored in the LMFDB.

The Computational Tools

- The lattices of class number 1 are stored in the LMFDB.
- If L has class number 1 and $p \mid d L$, then

$$
p \in\{2,3,5,7,11,13,17,23\}
$$

and structure of L_{p} can be explicitly determined using Sagemath.

The Computational Tools

- The lattices of class number 1 are stored in the LMFDB.
- If L has class number 1 and $p \mid d L$, then

$$
p \in\{2,3,5,7,11,13,17,23\}
$$

and structure of L_{p} can be explicitly determined using Sagemath.

- Use variant of λ_{p} that deceases spinor class number.

The Computational Tools

- The lattices of class number 1 are stored in the LMFDB.
- If L has class number 1 and $p \mid d L$, then

$$
p \in\{2,3,5,7,11,13,17,23\}
$$

and structure of L_{p} can be explicitly determined using Sagemath.

- Use variant of λ_{p} that deceases spinor class number.
- Use Algorithm with Nipp quaternary tables as input.

The Computational Tools

- The lattices of class number 1 are stored in the LMFDB.
- If L has class number 1 and $p \mid d L$, then

$$
p \in\{2,3,5,7,11,13,17,23\}
$$

and structure of L_{p} can be explicitly determined using Sagemath.

- Use variant of λ_{p} that deceases spinor class number.
- Use Algorithm with Nipp quaternary tables as input.
- Explicit computation of genus and spinor genus using Magma.

An Open Question:

Can all of the above classifications be extended to primitive representations? That is, when does

$$
a \in^{*} q(\operatorname{gen}(L)) \Longleftrightarrow a \in^{*} q(\operatorname{spn}(L)) \Longleftrightarrow a \in^{*} q(L)
$$

hold, and when does it fail? And why...and how badly?

The Inhomogeneous Case

For $f(\vec{x})=q(\vec{x})+\ell(\vec{x})$ inhomogeneous,

$$
f\left(x_{1}, \ldots, x_{n}\right)=a
$$

has a solution, if and only if

$$
a \in q(v+L)
$$

where $v+L$ is a lattice coset for $v \in \mathbb{Q} L$.

Theorem (Chan, Ricci, 2015)

Under certain arithmetic conditions, there are only finitely many equivalence classes of $v+L$ for which

$$
a \in q(\operatorname{gen}(v+L)) \Longleftrightarrow a \in q(v+L)
$$

An Open Question:

Under what conditions does

$$
a \in q(\operatorname{gen}(v+L)) \Longleftrightarrow a \in q(\operatorname{spn}(v+L)) \Longleftrightarrow a \in q(v+L)
$$

fail, and why, and how badly?

Thank You!

