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A rational polynomial f(xi, ..., x,) represents an integer a if
f(x1,...,xn) = a

has a solution with xg, ..., x, integers.
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A rational polynomial f(xi, ..., x,) represents an integer a if
f(x1,...,xn) = a

has a solution with xg, ..., x, integers.

The Representation Problem

Can we determine the set of all integers represented by f 7
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Hilbert's 10th Problem, 1900

To devise a process according to which it can be determined in a
finite number of operations whether a given Diophantine equation
is solvable in rational integers.
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Hilbert's 10th Problem, 1900

To devise a process according to which it can be determined in a
finite number of operations whether a given Diophantine equation
is solvable in rational integers.

Matiyasevich (1970) — no general solution exists.
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Theorem (Siegel, 1972)

For f quadratic, there exists a number C depending on a and f,

such that if f(x1,...,x,) = a has an integer solution, then it must
have one with

max | x; |[< C.
i<i<a
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Theorem (Siegel, 1972)

For f quadratic, there exists a number C depending on a and f,

such that if f(x1,...,x,) = a has an integer solution, then it must
have one with

max | x; |[< C.
i<i<a

tl;dr — it's possible, but totally impractical.
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Theorem (Hasse, 1920)

For f quadratic, the equation
f(x1,...,xn) = a

has a rational solution if and only if has a solution over Q, for
every prime p, and over R.

/39



Theorem (Hasse, 1920)

For f quadratic, the equation
f(x1,...,xn) = a

has a rational solution if and only if has a solution over Q, for
every prime p, and over R.

— Local-Global Principle
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Example 1:
Let f be the quadratic equation

f(x,y) = x>+ 11y,
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1\? 1\? 12
(5) *”(5) 0

Then

6/39



Example 1:
Let f be the quadratic equation
f(x,y) = x>+ 11y,

Then

and
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Example 1:
Let f be the quadratic equation

f(x,y) = x2 4 11y2.
1\? 1\? 12

- (=) ===
(3) +u(3) =%=3
4\ 2 1\? 27

— 11{ = = — =
(5) +u(3) =5 -3

but clearly f(x,y) = 3 has no integral solution.

Then

and
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The Big Question:

To what extent does an integral local-global principle hold? When
does it fail? And why? And how badly?
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The General Setup

A quadratic polynomial f(X) can be written as
f(X)=q(xX)+4(xX)+c
where
» g is a homogeneous quadratic.

» ( is a homogeneous linear.

» C is a constant.
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The General Setup

A quadratic polynomial f(X) can be written as
f(x) = q(X) + £(X)
where
» g is a homogeneous quadratic.

» ( is a homogeneous linear.
> cisaconstant:
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The Homogeneous Case
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The Homogeneous Case

For f(X) = q(X) homogeneous (positive definite), define
L=(2",q).
Then L is a quadratic lattice, and

q(L) ={aeN: f(xq,...,xn) = a has a solution in Z"}.

39



The Homogeneous Case

For f(X) = q(X) homogeneous (positive definite), define
L=(Z",q).
Then L is a quadratic lattice, and
q(L) ={aeN: f(xq,...,xn) = a has a solution in Z"}.
For p prime, define the local lattice as
Ly =L®z7Z,

and q(Lp) accordingly.
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For a quadratic lattice L = (Z",q) and V = QL,

» the class of L is given by

cs(L) =0(V)-L,
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For a quadratic lattice L = (Z",q) and V = QL,

» the class of L is given by
cs(L) = O(V) - L,
» the spinor genus of L is given by
spn(L) = OF(V)O4(L) - L,

where O’(V,) is the kernel of the spinor norm map, 6,
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For a quadratic lattice L = (Z",q) and V = QL,

» the class of L is given by
cs(L) = O(V) - L,
» the spinor genus of L is given by
spn(L) = OF(V)O4(L) - L,

where O’(V,) is the kernel of the spinor norm map, 6,

» the genus of L is given by

gen(L) = Oa(V) - L.
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For a quadratic lattice L = (Z",q) and V = QL,

» the class of L is given by
cds(L)y=0(V)-L={MCV:M=L},
» the spinor genus of L is given by
spn(L) = O (V)04 (L) - L,

where O'(V,) is the kernel of the spinor norm map, 6,

» the genus of L is given by

gen(L) = Ox(V) - L={MCV: M, =L, for all p}.
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Similarly to g(L), define

» q(spn(L))= the set of integers represented by M € spn(L).
» g(gen(L))= the set of integers represented by M € gen(L).
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Similarly to g(L), define

» q(spn(L))= the set of integers represented by M € spn(L).
» g(gen(L))= the set of integers represented by M € gen(L).

A nice integral local global principle would look like
“a € g(gen(L)) <= a € q(L)"

...but that would be incorrect (recall example 1).
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Example 2:
Let L be the lattice with quadratic map

q(x,y,z) =x*+y* +2°

12/39



Example 2:
Let L be the lattice with quadratic map
q(x,y,z) =x*+y* +2°

then
q(L)={neN:n#4°8b+7) fora,bec Z}.
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Example 2:
Let L be the lattice with quadratic map

q(x,y,z) =x*+y* +2°

then
q(L) ={neN:n+#4%8b+7) fora,be Z}.
Here,
gen(L) = spn(L) = cls(L)
so clearly

q(gen(L)) = q(L).
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The Big Question:
Under what conditions does

q(gen(L)) = q(L)

hold?
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The Big Question:
Under what conditions does

q(gen(L)) = q(L)

hold? And if it fails, why, and where, and how badly?
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The Big Question:
Under what conditions does

q(spn(L)) = q(L)

hold? And if it fails, why, and where, and how badly?
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Theorem (Kloosterman, 1926, Tartakowsky, 1929)
For positive definite L with rk(L) > 4 then

aegen(L) < acq(l)

provided that a > 0 (and p® t a for p anisotropic when n = 4).
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aegen(L) < acq(l)

provided that a > 0 (and p® t a for p anisotropic when n = 4).

» Hsia, Kneser Kitaoka (1977): Gave computable constant
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Theorem (Kloosterman, 1926, Tartakowsky, 1929)
For positive definite L with rk(L) > 4 then

aegen(L) < acq(l)

provided that a > 0 (and p® t a for p anisotropic when n = 4).

» Hsia, Kneser Kitaoka (1977): Gave computable constant

acgen(l)<=acq(L)ifa> C.

» lcaza (1999): Made C effective.
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Theorem (Duke, Schulze-Pillot, 1990)
For positive definite L with rk(L) = 3,

a € q(spn(L)) <= acq(L)

provided that a > 0.
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What might the genus look like?
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What might the genus look like?

Class Number One

Single Spinor Genus

Spinor-Class Number One

Worst Case Scenario
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Theorem (Earnest, Hsia, 1991)

For a positive-definite lattice L with rank n > 5,

gen(L) = cls(L) <= spn(L) = cls(L)
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Theorem (Earnest, Hsia, 1991)

For a positive-definite lattice L with rank n > 5,

gen(L) = cls(L) <= spn(L) = cls(L)

Class Number One

Spinor-Class Number One

17/39



Goal 1:
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Goal 1:

To classify all lattices which are regular, that is

g(gen(L)) = q(L),
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Goal 1:

To classify all lattices which are regular, that is

q(gen(L)) = q(L),

and spinor regular, that is,

q(spn(L)) = q(L).
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When rk(L) > 4, there are infinitely many regular forms.
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Theorem (Jagy, Kaplansky, Schiemann, 1997)

There are at most 913 regular ternary lattices, that is, lattices for
which

q(gen(L)) = q(L)-
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be regular.
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Theorem (Jagy, Kaplansky, Schiemann, 1997)

There are at most 913 regular ternary lattices, that is, lattices for
which

q(gen(L)) = q(L)-

» Jagy, Kaplansky, Schiemann, 1997: Confirmed 891 of them to
be regular.

» Oh, 2011: Confirmed 8 more on the list.
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Theorem (Jagy, Kaplansky, Schiemann, 1997)

There are at most 913 regular ternary lattices, that is, lattices for
which

q(gen(L)) = q(L)-

» Jagy, Kaplansky, Schiemann, 1997: Confirmed 891 of them to
be regular.

» Oh, 2011: Confirmed 8 more on the list.

» Lemke Oliver, 2015: Confirmed remaining 14 assuming GRH.
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Theorem (Jagy, 2004)

There are 29 spinor regular ternary lattices which aren't regular,
that is, lattices for which

q(gen(L)) # q(spn(L)) = q(L).
for which dL < 575, 000.
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Theorem (Jagy, 2004)

There are 29 spinor regular ternary lattices which aren't regular,
that is, lattices for which

q(gen(L)) # q(spn(L)) = q(L).

for which dL < 575, 000.

Theorem (Earnest, H-, 2017) J

Jagy'’s list is complete.
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The Watson Transformation

For an odd prime p and
LP = <37 pﬁba p'Yc>
with a, b,c € Z; and 8 < v, define

(a, b, p?~2c) if 6=0
(Mo(L)), = (b,pP 1o, p"te) ifp=1
(a,pP2b,p72c) ifB>2.

22 /39



The Watson Transformation

For an odd prime p and
LP = <37 p5b7 p'Yc>
with a, b,c € Z; and 8 < v, define

(a, b, p?~2c) if 6=0
(Apo(L), = (b,pP o, p 7 e) ifB=1

(a,pP2b,p72c) ifB>2.

Two key observations:

22 /39



The Watson Transformation

For an odd prime p and
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(Apo(L), = (b,pP o, p 7 e) ifB=1

(a,pP2b,p72c) ifB>2.

Two key observations:

> For g # p, (Ap(L)), = Ly for u € Zg.
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The Watson Transformation

For an odd prime p and
LP = <a7 pﬁb7 p'Yc>
with a, b,c € Z; and 8 < v, define

(a, b, p?~2c) if 6=0
(Apo(L), = (b,pP o, p 7 e) ifB=1

(a,pB2b,p72c) if B>2.

Two key observations:
> For g # p, (Ap(L)), = Ly for u € Zg.
» ordp(dAp(L)) = ordp(dL) —1,2,4

22 /39



The Preservation of Regularity

A lattice L is said to behave well if

2p? t dL and L is not split by H
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The Preservation of Regularity

A lattice L is said to behave well if

2p? t dL and L is not split by H

Theorem (Chan, Earnest, 2004)

For spinor regular lattice L,

» If L behaves well at every prime then L is regular.
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The Preservation of Regularity

A lattice L is said to behave well if

2p? t dL and L is not split by H

Theorem (Chan, Earnest, 2004)

For spinor regular lattice L,

» If L behaves well at every prime then L is regular.

» If ordy(dL) > r, then L does not behave well.
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The Preservation of Regularity

A lattice L is said to behave well if

2p? t dL and L is not split by H

Theorem (Chan, Earnest, 2004)

For spinor regular lattice L,
» If L behaves well at every prime then L is regular.

» If ordy(dL) > r, then L does not behave well.

» If L does not behave well, then \p(L) is spinor regular.
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The Preservation of Regularity

A lattice L is said to behave well if

2p? t dL and L is not split by H

Theorem (Chan, Earnest, 2004)

For spinor regular lattice L,
» If L behaves well at every prime then L is regular.
» If ordy(dL) > r, then L does not behave well.
» If L does not behave well, then \p(L) is spinor regular.

> There exists L' with ord,(dL") = ordp(dL) and L' behaves well
at all g # p.

v
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The Reduction

Suppose L is spinor regular and

dL:piapzk
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The Reduction

Suppose L is spinor regular and
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The Reduction

Suppose L is spinor regular and
dL = p} - pi*
For each p; replace L with L', then either
L’ behaves well at p; == L’ is regular
or

L’ not behaves well at p; = A, (L’) is spinor regular
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The Reduction

Suppose L is spinor regular and
dL = p} - pi*
For each p; replace L with L', then either
L’ behaves well at p; == L’ is regular
or

L’ not behaves well at p; = A, (L’) is spinor regular

= Xspl,(L’) is regular

24 /39



The Reduction

Suppose L is spinor regular and
dL = p} - pi*
For each p; replace L with L', then either
L’ behaves well at p; == L’ is regular
or

L’ not behaves well at p; = A, (L’) is spinor regular

= Xspl,(L’) is regular

Therefore,
pi € {2,3,5,7,11,13,17,23}

24 /39



The Reduction

For any odd pair, p - g, do the same trick then

p-qe{3-5,3-7,3-11,3-13, 5-7, 11-13}
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The Reduction

For any odd pair, p - g, do the same trick then
p-ge{3-5,3-7,3-11,3-13, 5.7, 11-13}
and any triple must be of the form
2-p-q

with p - g coming from above.
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The “Skip 4" Method

Lemma
For a prime p with t > r, and gcd(p, m) =1, if
ptm, pt*im, pt*2m and, p'3m
are not regular or spinor regular discriminants, then
to

pom

is not a spinor regular discriminant for any tg > t.
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Discriminant Elimination

Suppose L is spinor regular but not regular with dL = 2¥.17™ and
L17 = (a,17°b,177¢).
If B+~ > 2 then

(A@(L))N — (3,17% b, 177 ¢)

is spinor regular where 3’ ++/ =1,2.
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Discriminant Elimination

Suppose L is spinor regular but not regular with dL = 2¥.17™ and
L17 = (a,17°b,177¢).
If B+~ > 2 then
(A‘{?(L))N — (3,17% b, 177 ¢)
is spinor regular where 3’ ++/ =1,2.

— appeal to JKS list of 913.
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Discriminant Elimination

Suppose L is spinor regular but not regular with dL = 3% . 7™,
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Discriminant Elimination

Suppose L is spinor regular but not regular with dL = 3% . 7™,

keym [ 7 72 7 T80
3 d d - - - -
32 d d - - - -
33 d d4 - - - *
34 _ _ _ _ * *
35 _ _ _ * * *
36 L X x %
37 ok k% %
d, = discriminant of a regular form
* = product greater than 575,000
r3 = 5

r7 = 2

28 /39



Goal 2:
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Goal 2:
To classify all lattices with class number 1, that is,

gen(L) = cls(L),
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Goal 2:

To classify all lattices with class number 1, that is,
gen(L) = cls(L),

and spinor class number 1, that is,

spn(L) = gen(L).
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Theorem (Kirshmer, Lorch, 2013)

An enumeration of all positive definite L with

gen(L) = spn(L) = cls(L),

that is, L has class number 1.
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Theorem (Earnest, H-, 2017)

There are 27 ternary forms, for which

gen(L) # spn(L) = cis(L),

that is, L has spinor class number 1, but L has class number
greater than 1.
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Theorem (Earnest, H-, 2018)

There is only one quaternary form,

q(x,y,z,w) = x> +xy+7y2 +32° +3zw—i—3w2,

which has spinor class number 1, but class number greater than 1.

v
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Algorithm (Earnest, Nipp, 1991)

INPUT: A prime p and a lattice discriminant D.
OUTPUT: List of isometry class representatives for lattices
with discriminant p®D.
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Algorithm (Earnest, Nipp, 1991)

INPUT: A prime p and a lattice discriminant D.
OUTPUT: List of isometry class representatives for lattices
with discriminant p®D.

1 Let P be the set of all matrices

EEREEE]

where a, b, c < p non-negative integers.

oroO
BN=X=)
=L oo

oow o
orb O
[t
oocov
coru
or oo
=W on

1
0
0
0

—

[Nl N
ow oo

1
0
0
0

[=NeNaNn
coro
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Algorithm (Earnest, Nipp, 1991)

INPUT: A prime p and a lattice discriminant D.
OUTPUT: List of isometry class representatives for lattices
with discriminant p®D.

1 Let P be the set of all matrices

EEREEE]

where a, b, c < p non-negative integers.

oroo
N =N=]
=)

oow o
orb O
[t
oocov
coru
or oo
=W on

1
0
0
0

—

[Nl N
ow oo

1
0
0
0

[=NeNaNn
coro

2 For A € D a set of representative lattices of discriminant D,
and for P € P, compute

PLAP.
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Algorithm (Earnest, Nipp, 1991)

INPUT: A prime p and a lattice discriminant D.
OUTPUT: List of isometry class representatives for lattices
with discriminant p®D.

1 Let P be the set of all matrices

EEREEE]

where a, b, c < p non-negative integers.

oroo
N =N=]
=)

oow o
orb O
[t
oocov
coru
or oo
=W on

1
0
0
0

—

[Nl N
ow oo

1
0
0
0

[=NeNaNn
coro

2 For A € D a set of representative lattices of discriminant D,
and for P € P, compute

PLAP.

3 Reduce the set of all P'AP up to isometry.
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The Computational Tools

» The lattices of class number 1 are stored in the LMFDB.
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The Computational Tools

» The lattices of class number 1 are stored in the LMFDB.

» If L has class number 1 and p | dL, then
p € {2,3,5,7,11,13,17,23}

and structure of L, can be explicitly determined using
Sagemath.
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The Computational Tools

» The lattices of class number 1 are stored in the LMFDB.
» If L has class number 1 and p | dL, then

p € {2,3,5,7,11,13,17,23}

and structure of L, can be explicitly determined using
Sagemath.

» Use variant of A\, that deceases spinor class number.
» Use Algorithm with Nipp quaternary tables as input.

» Explicit computation of genus and spinor genus using Magma.
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An Open Question:

Can all of the above classifications be extended to primitive
representations? That is, when does

a € q(gen(L)) <= a€” q(spn(L)) <= a € q(L)

hold, and when does it fail? And why...and how badly?
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The Inhomogeneous Case

For f(X) = q(X) + ¢(X) inhomogeneous,
f(x1,....,xn) = a
has a solution, if and only if

aeq(v+1Ll)

where v + L is a lattice coset for v € QL.
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Theorem (Chan, Ricci, 2015)

Under certain arithmetic conditions, there are only finitely many
equivalence classes of v + L for which

acq(gen(v+ L)<= acq(v+1L)
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An Open Question:
Under what conditions does

acq(gen(v+ L)< acq(spn(v+ L)< acq(v+Ll)

fail, and why, and how badly?
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Thank You!
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