Spinor regular ternary quadratic lattices

Anna Haensch Duquesne¹ University

Joint work with Andy Earnest

Computational Challenges in the Theory of Lattices ICERM 27 April 2018 A rational polynomial $f(x_1, ..., x_n)$ represents an integer *a* if

$$f(x_1,...,x_n)=a$$

has a solution with $x_1, ..., x_n$ integers.

A rational polynomial $f(x_1, ..., x_n)$ represents an integer *a* if

$$f(x_1,...,x_n)=a$$

has a solution with $x_1, ..., x_n$ integers.

The Representation Problem

Can we determine the set of all integers represented by f?

Hilbert's 10th Problem, 1900

To devise a process according to which it can be determined in a finite number of operations whether a given Diophantine equation is solvable in rational integers.

Hilbert's 10th Problem, 1900

To devise a process according to which it can be determined in a finite number of operations whether a given Diophantine equation is solvable in rational integers.

Matiyasevich (1970) \rightarrow no general solution exists.

Theorem (Siegel, 1972)

For f quadratic, there exists a number C depending on a and f, such that if $f(x_1, ..., x_n) = a$ has an integer solution, then it must have one with

$$\max_{i\leq i\leq a}\mid x_i\mid\leq C.$$

Theorem (Siegel, 1972)

For f quadratic, there exists a number C depending on a and f, such that if $f(x_1, ..., x_n) = a$ has an integer solution, then it must have one with

 $\max_{i\leq i\leq a}\mid x_i\mid\leq C.$

tl;dr \rightarrow it's possible, but totally impractical.

Theorem (Hasse, 1920) For f quadratic, the equation

$$f(x_1,...,x_n)=a$$

has a rational solution if and only if has a solution over \mathbb{Q}_p for every prime p, and over \mathbb{R} .

Theorem (Hasse, 1920) For f quadratic, the equation

$$f(x_1,...,x_n)=a$$

has a rational solution if and only if has a solution over \mathbb{Q}_p for every prime p, and over \mathbb{R} .

 \rightarrow Local-Global Principle

Let f be the quadratic equation

$$f(x,y)=x^2+11y^2.$$

Let f be the quadratic equation

$$f(x,y) = x^2 + 11y^2.$$

Then

$$\left(\frac{1}{2}\right)^2 + 11\left(\frac{1}{2}\right)^2 = \frac{12}{4} = 3$$

Let f be the quadratic equation

$$f(x,y)=x^2+11y^2.$$

Then

$$\left(\frac{1}{2}\right)^2 + 11\left(\frac{1}{2}\right)^2 = \frac{12}{4} = 3$$

and

$$\left(\frac{4}{3}\right)^2 + 11\left(\frac{1}{3}\right)^2 = \frac{27}{9} = 3$$

Let f be the quadratic equation

$$f(x,y)=x^2+11y^2.$$

Then

$$\left(\frac{1}{2}\right)^2 + 11\left(\frac{1}{2}\right)^2 = \frac{12}{4} = 3$$

and

$$\left(\frac{4}{3}\right)^2 + 11\left(\frac{1}{3}\right)^2 = \frac{27}{9} = 3$$

but clearly f(x, y) = 3 has no integral solution.

To what extent does an integral local-global principle hold? When does it fail? And why? And how badly?

The General Setup

A quadratic polynomial $f(\vec{x})$ can be written as

$$f(\vec{x}) = q(\vec{x}) + \ell(\vec{x}) + c$$

where

- ► q is a homogeneous quadratic.
- ℓ is a homogeneous linear.
- ► c is a constant.

The General Setup

A quadratic polynomial $f(\vec{x})$ can be written as

$$f(\vec{x}) = q(\vec{x}) + \ell(\vec{x})$$

where

- ► q is a homogeneous quadratic.
- ℓ is a homogeneous linear.
- ▶ *c* is a constant.

The Homogeneous Case

The Homogeneous Case

For $f(\vec{x}) = q(\vec{x})$ homogeneous (positive definite), define

$$L = (\mathbb{Z}^n, q).$$

Then *L* is a **quadratic lattice**, and

 $q(L) = \{a \in \mathbb{N} : f(x_1, ..., x_n) = a \text{ has a solution in } \mathbb{Z}^n\}.$

The Homogeneous Case

For $f(\vec{x}) = q(\vec{x})$ homogeneous (positive definite), define

$$L = (\mathbb{Z}^n, q).$$

Then *L* is a **quadratic lattice**, and

$$q(L) = \{a \in \mathbb{N} : f(x_1, ..., x_n) = a \text{ has a solution in } \mathbb{Z}^n\}.$$

For *p* prime, define the **local lattice** as

$$L_p = L \otimes_{\mathbb{Z}} \mathbb{Z}_p$$

and $q(L_p)$ accordingly.

► the **class of** *L* is given by

 $\mathsf{cls}(L) = O(V) \cdot L,$

► the class of *L* is given by

$$\mathsf{cls}(L) = O(V) \cdot L,$$

► the **spinor genus of** *L* is given by

$$\operatorname{spn}(L) = O^+(V)O'_{\mathbb{A}}(L) \cdot L,$$

where $O'(V_p)$ is the kernel of the spinor norm map, θ ,

► the class of *L* is given by

$$\mathsf{cls}(L) = O(V) \cdot L,$$

► the **spinor genus of** *L* is given by

$$\operatorname{spn}(L) = O^+(V)O'_{\mathbb{A}}(L) \cdot L,$$

where $O'(V_p)$ is the kernel of the spinor norm map, θ , the **genus of** *I* is given by

► the **genus of** *L* is given by

$$gen(L) = O_{\mathbb{A}}(V) \cdot L.$$

▶ the class of *L* is given by

$$\operatorname{cls}(L) = O(V) \cdot L = \{M \subseteq V : M \cong L\},\$$

► the **spinor genus of** *L* is given by

$$\operatorname{spn}(L) = O^+(V)O'_{\mathbb{A}}(L) \cdot L,$$

where $O'(V_p)$ is the kernel of the spinor norm map, θ , • the **genus of** *L* is given by

$$gen(L) = O_{\mathbb{A}}(V) \cdot L = \{ M \subseteq V : M_p \cong L_p \text{ for all } p \}.$$

Similarly to q(L), define

- ▶ $q(\operatorname{spn}(L))$ = the set of integers represented by $M \in \operatorname{spn}(L)$.
- ▶ q(gen(L))= the set of integers represented by $M \in gen(L)$.

Similarly to q(L), define

- $q(\operatorname{spn}(L))$ = the set of integers represented by $M \in \operatorname{spn}(L)$.
- ▶ q(gen(L))= the set of integers represented by $M \in gen(L)$.

A nice integral local global principle would look like

 $"a \in q(gen(L)) \Longleftrightarrow a \in q(L)"$

Similarly to q(L), define

- ▶ $q(\operatorname{spn}(L))$ = the set of integers represented by $M \in \operatorname{spn}(L)$.
- ▶ q(gen(L))= the set of integers represented by $M \in gen(L)$.

A nice integral local global principle would look like

 $"a \in q(gen(L)) \Longleftrightarrow a \in q(L)"$

...but that would be incorrect (recall example 1).

Example 2:

Let L be the lattice with quadratic map

$$q(x, y, z) = x^2 + y^2 + z^2$$

Example 2:

Let L be the lattice with quadratic map

$$q(x, y, z) = x^2 + y^2 + z^2$$

then

$$q(L) = \{n \in \mathbb{N} : n \neq 4^a(8b+7) \text{ for } a, b \in \mathbb{Z}\}.$$

Example 2:

Let L be the lattice with quadratic map

$$q(x, y, z) = x^2 + y^2 + z^2$$

then

$$q(L) = \{n \in \mathbb{N} : n \neq 4^a(8b+7) \text{ for } a, b \in \mathbb{Z}\}.$$

Here,

$$gen(L) = spn(L) = cls(L)$$

so clearly

$$q(gen(L)) = q(L).$$

Under what conditions does

q(gen(L)) = q(L)

hold?

Under what conditions does

$$q(gen(L)) = q(L)$$

hold? And if it fails, why, and where, and how badly?

Under what conditions does

$$q(\operatorname{spn}(L)) = q(L)$$

hold? And if it fails, why, and where, and how badly?

Theorem (Kloosterman, 1926, Tartakowsky, 1929) For positive definite L with $rk(L) \ge 4$ then

$$a \in \operatorname{gen}(L) \iff a \in q(L)$$

provided that $a \gg 0$ (and $p^s \nmid a$ for p anisotropic when n = 4).

Theorem (Kloosterman, 1926, Tartakowsky, 1929) For positive definite L with $rk(L) \ge 4$ then

$$a \in \operatorname{gen}(L) \iff a \in q(L)$$

provided that $a \gg 0$ (and $p^s \nmid a$ for p anisotropic when n = 4).

▶ Hsia, Kneser Kitaoka (1977): Gave computable constant

$$a \in \operatorname{gen}(L) \iff a \in q(L)$$
 if $a \gg C$.

Theorem (Kloosterman, 1926, Tartakowsky, 1929) For positive definite L with $rk(L) \ge 4$ then

$$a \in \operatorname{gen}(L) \iff a \in q(L)$$

provided that $a \gg 0$ (and $p^s \nmid a$ for p anisotropic when n = 4).

► Hsia, Kneser Kitaoka (1977): Gave computable constant

$$a \in \operatorname{gen}(L) \iff a \in q(L)$$
 if $a \gg C$.

► Icaza (1999): Made C effective.

Theorem (Duke, Schulze-Pillot, 1990) For positive definite L with rk(L) = 3,

$$a \in^* q(\operatorname{spn}(L)) \Longleftrightarrow a \in q(L)$$

provided that $a \gg 0$.

What might the genus look like?

What might the genus look like?

Single Spinor Genus

Worst Case Scenario

Theorem (Earnest, Hsia, 1991)

For a positive-definite lattice L with rank $n \ge 5$,

$$gen(L) = cls(L) \iff spn(L) = cls(L)$$

Theorem (Earnest, Hsia, 1991)

For a positive-definite lattice L with rank $n \ge 5$,

$$gen(L) = cls(L) \iff spn(L) = cls(L)$$

Goal 1:

Goal 1:

To classify all lattices which are regular, that is

q(gen(L)) = q(L),

Goal 1:

To classify all lattices which are regular, that is

q(gen(L)) = q(L),

and spinor regular, that is,

 $q(\operatorname{spn}(L)) = q(L).$

When $rk(L) \ge 4$, there are infinitely many regular forms.

There are at most 913 regular ternary lattices, that is, lattices for which

q(gen(L)) = q(L).

There are at most 913 regular ternary lattices, that is, lattices for which

$$q(gen(L)) = q(L).$$

► Jagy, Kaplansky, Schiemann, 1997: Confirmed 891 of them to be regular.

There are at most 913 regular ternary lattices, that is, lattices for which

$$q(gen(L)) = q(L).$$

- Jagy, Kaplansky, Schiemann, 1997: Confirmed 891 of them to be regular.
- ▶ Oh, 2011: Confirmed 8 more on the list.

There are at most 913 regular ternary lattices, that is, lattices for which

$$q(gen(L)) = q(L).$$

- ► Jagy, Kaplansky, Schiemann, 1997: Confirmed 891 of them to be regular.
- ► Oh, 2011: Confirmed 8 more on the list.
- ► Lemke Oliver, 2015: Confirmed remaining 14 assuming GRH.

Theorem (Jagy, 2004)

There are 29 spinor regular ternary lattices which aren't regular, that is, lattices for which

 $q(gen(L)) \neq q(spn(L)) = q(L).$

for which dL < 575,000.

Theorem (Jagy, 2004)

There are 29 spinor regular ternary lattices which aren't regular, that is, lattices for which

 $q(gen(L)) \neq q(spn(L)) = q(L).$

for which dL < 575,000.

Theorem (Earnest, H-, 2017) Jagy's list is complete.

For an odd prime p and

$$L_{p}\cong\langle a,p^{\beta}b,p^{\gamma}c
angle$$

with $a, b, c \in \mathbb{Z}_p^{\times}$ and $\beta \leq \gamma$, define

$$(\lambda_p(L))_p = egin{cases} \langle a, b, p^{\gamma-2}c
angle & ext{if } eta = 0 \ \langle b, p^{eta-1}a, p^{\gamma-1}c
angle & ext{if } eta = 1 \ \langle a, p^{eta-2}b, p^{\gamma-2}c
angle & ext{if } eta \geq 2. \end{cases}$$

For an odd prime p and

$$L_p \cong \langle a, p^{\beta}b, p^{\gamma}c \rangle$$

with $a, b, c \in \mathbb{Z}_p^{\times}$ and $\beta \leq \gamma$, define

$$\left(\lambda_p(L)
ight)_p = egin{cases} \langle a,b,p^{\gamma-2}c
angle & ext{if }eta=0\ \langle b,p^{eta-1}a,p^{\gamma-1}c
angle & ext{if }eta=1\ \langle a,p^{eta-2}b,p^{\gamma-2}c
angle & ext{if }eta\geq 2. \end{cases}$$

Two key observations:

For an odd prime p and

$$L_{p}\cong\langle a,p^{\beta}b,p^{\gamma}c
angle$$

with $a, b, c \in \mathbb{Z}_p^{\times}$ and $\beta \leq \gamma$, define

$$\left(\lambda_p(L)
ight)_p = egin{cases} \langle a,b,p^{\gamma-2}c
angle & ext{if }eta=0\ \langle b,p^{eta-1}a,p^{\gamma-1}c
angle & ext{if }eta=1\ \langle a,p^{eta-2}b,p^{\gamma-2}c
angle & ext{if }eta\geq2. \end{cases}$$

Two key observations:

► For
$$q \neq p$$
, $(\lambda_p(L))_q = L_q^u$ for $u \in \mathbb{Z}_q^{\times}$.

For an odd prime p and

$$L_{p}\cong\langle a,p^{\beta}b,p^{\gamma}c
angle$$

with $a, b, c \in \mathbb{Z}_p^{\times}$ and $\beta \leq \gamma$, define

$$\left(\lambda_p(L)
ight)_p = egin{cases} \langle a,b,p^{\gamma-2}c
angle & ext{if }eta=0\ \langle b,p^{eta-1}a,p^{\gamma-1}c
angle & ext{if }eta=1\ \langle a,p^{eta-2}b,p^{\gamma-2}c
angle & ext{if }eta\geq2. \end{cases}$$

Two key observations:

• For $q \neq p$, $(\lambda_p(L))_q = L_q^u$ for $u \in \mathbb{Z}_q^{\times}$.

•
$$\operatorname{ord}_p(d\lambda_p(L)) = \operatorname{ord}_p(dL) - 1, 2, 4$$

A lattice L is said to behave well if

 $2p^2 \nmid dL$ and L is not split by \mathbb{H}

A lattice L is said to **behave well** if

 $2p^2 \nmid dL$ and L is not split by \mathbb{H}

Theorem (Chan, Earnest, 2004)

For spinor regular lattice L,

► If L behaves well at every prime then L is regular.

A lattice L is said to **behave well** if

 $2p^2 \nmid dL$ and L is not split by \mathbb{H}

Theorem (Chan, Earnest, 2004)

For spinor regular lattice L,

- ► If L behaves well at every prime then L is regular.
- If $ord_p(dL) \ge r_p$ then L does not behave well.

A lattice L is said to **behave well** if

 $2p^2 \nmid dL$ and L is not split by \mathbb{H}

Theorem (Chan, Earnest, 2004)

For spinor regular lattice L,

- ► If L behaves well at every prime then L is regular.
- If $ord_p(dL) \ge r_p$ then L does not behave well.
- If L does not behave well, then $\lambda_p(L)$ is spinor regular.

A lattice L is said to **behave well** if

 $2p^2 \nmid dL$ and L is not split by \mathbb{H}

Theorem (Chan, Earnest, 2004)

For spinor regular lattice L,

- ► If L behaves well at every prime then L is regular.
- If $ord_p(dL) \ge r_p$ then L does not behave well.
- If L does not behave well, then $\lambda_p(L)$ is spinor regular.
- There exists L' with ord_p(dL') = ord_p(dL) and L' behaves well at all q ≠ p.

Suppose L is spinor regular and

$$dL = p_1^{a_a} \cdots p_k^{a_k}$$

Suppose L is spinor regular and

$$dL = p_1^{a_a} \cdots p_k^{a_k}$$

For each p_i replace L with L', then either

Suppose L is spinor regular and

$$dL = p_1^{a_a} \cdots p_k^{a_k}$$

For each p_i replace L with L', then either

$$L'$$
 behaves well at $p_i \implies L'$ is regular

Suppose L is spinor regular and

$$dL = p_1^{a_a} \cdots p_k^{a_k}$$

For each p_i replace L with L', then either

$$L'$$
 behaves well at $p_i \implies L'$ is regular

or

L' not behaves well at $p_i \implies \lambda_{p_i}(L')$ is spinor regular

Suppose L is spinor regular and

$$dL = p_1^{a_a} \cdots p_k^{a_k}$$

For each p_i replace L with L', then either

$$L'$$
 behaves well at $p_i \implies L'$ is regular

or

$$L'$$
 not behaves well at $p_i \implies \lambda_{p_i}(L')$ is spinor regular
 \vdots
 $\implies \lambda_{p_i}^{\delta}(L')$ is regular

Suppose L is spinor regular and

$$dL = p_1^{a_a} \cdots p_k^{a_k}$$

For each p_i replace L with L', then either

$$L'$$
 behaves well at $p_i \implies L'$ is regular

or

$$\mathcal{L}'$$
 not behaves well at $p_i \implies \lambda_{p_i}(\mathcal{L}')$ is spinor regular $dots \ dots \ \Longrightarrow \ \lambda_{p_i}^{\delta}(\mathcal{L}')$ is regular

Therefore,

$$p_i \in \{2, 3, 5, 7, 11, 13, 17, 23\}$$

For any odd pair, $p \cdot q$, do the same trick then

 $p \cdot q \in \{3 \cdot 5, 3 \cdot 7, 3 \cdot 11, 3 \cdot 13, 5 \cdot 7, 11 \cdot 13\}$

For any odd pair, $p \cdot q$, do the same trick then

 $p \cdot q \in \{3 \cdot 5, 3 \cdot 7, 3 \cdot 11, 3 \cdot 13, 5 \cdot 7, 11 \cdot 13\}$

and any triple must be of the form

 $2 \cdot p \cdot q$

with $p \cdot q$ coming from above.

The "Skip 4" Method

Lemma

For a prime p with $t > r_p$ and gcd(p, m) = 1, if

$$p^t m, p^{t+1}m, p^{t+2}m$$
 and, $p^{t+3}m$

are not regular or spinor regular discriminants, then

$p^{t_0}m$

is not a spinor regular discriminant for any $t_0 > t$.

Suppose L is spinor regular but not regular with $dL = 2^k \cdot 17^m$, and

$$L_{17} \cong \langle a, 17^{\beta}b, 17^{\gamma}c \rangle.$$

If $\beta+\gamma>2$ then

$$\left(\lambda_{17}^{\delta}(L)
ight)_{17}=\langle a,17^{eta^{\prime}}b,17^{\gamma^{\prime}}c
angle$$

is spinor regular where $\beta' + \gamma' = 1, 2$.

Suppose L is spinor regular but not regular with $dL = 2^k \cdot 17^m$, and

$$L_{17} \cong \langle a, 17^{\beta}b, 17^{\gamma}c \rangle.$$

If $\beta+\gamma>2$ then

$$\left(\lambda_{17}^{\delta}(L)
ight)_{17}=\langle a,17^{eta^{\prime}}b,17^{\gamma^{\prime}}c
angle$$

is spinor regular where $\beta' + \gamma' = 1, 2$.

 \rightarrow appeal to JKS list of 913.

Suppose *L* is spinor regular but not regular with $dL = 3^k \cdot 7^m$.

Suppose *L* is spinor regular but not regular with $dL = 3^k \cdot 7^m$.

$3^k \cdot 7^m$	7	7 ²	7 ³	7 ⁴	7 ⁵	7 ⁶
3	d _r	dr	-	-	-	-
3 ²	dr	dr	-	-	-	-
3 ³	dr	dr	-	-	-	*
3 ⁴	-	-	-	-	*	*
3 ⁵	-	-	-	*	*	*
3 ⁶	-	-	-	*	*	*
37	-	-	*	*	*	*

- $d_r = discriminant$ of a regular form
 - * = product greater than 575,000
- $r_3 = 5$
- $r_7 = 2$

Goal 2:

Goal 2:

To classify all lattices with class number 1, that is,

gen(L) = cls(L),

Goal 2:

To classify all lattices with class number 1, that is,

gen(L) = cls(L),

and spinor class number 1, that is,

spn(L) = gen(L).

Theorem (Kirshmer, Lorch, 2013) An enumeration of all positive definite L with

$$gen(L) = spn(L) = cls(L),$$

that is, L has class number 1.

Theorem (Earnest, H-, 2017)

There are 27 ternary forms, for which

$$gen(L) \neq spn(L) = cls(L),$$

that is, L has spinor class number 1, but L has class number greater than 1.

Theorem (Earnest, H-, 2018)

There is only one quaternary form,

$$q(x, y, z, w) = x^{2} + xy + 7y^{2} + 3z^{2} + 3zw + 3w^{2},$$

which has spinor class number 1, but class number greater than 1.

INPUT: A prime p and a lattice discriminant D.
 OUTPUT: List of isometry class representatives for lattices with discriminant p²D.

INPUT: A prime p and a lattice discriminant D. OUTPUT: List of isometry class representatives for lattices with discriminant p²D.

1 Let \mathcal{P} be the set of all matrices

 $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & p \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & p & a \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & p & a & b \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} p & a & b & c \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{bmatrix}$

where a, b, c < p non-negative integers.

INPUT: A prime p and a lattice discriminant D. OUTPUT: List of isometry class representatives for lattices with discriminant p²D.

1 Let \mathcal{P} be the set of all matrices

 $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & p \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & p & a \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & p & a & b \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} p & a & b & c \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{bmatrix}$

where a, b, c < p non-negative integers.

2 For A ∈ D a set of representative lattices of discriminant D, and for P ∈ P, compute

$$P^{t}AP$$
.

INPUT: A prime p and a lattice discriminant D. OUTPUT: List of isometry class representatives for lattices with discriminant p²D.

1 Let \mathcal{P} be the set of all matrices

 $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & p \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & p & a \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & p & a & b \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} p & a & b & c \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{bmatrix}$

where a, b, c < p non-negative integers.

2 For A ∈ D a set of representative lattices of discriminant D, and for P ∈ P, compute

$$P^{t}AP$$
.

3 Reduce the set of all P^tAP up to isometry.

► The lattices of class number 1 are stored in the LMFDB.

- ► The lattices of class number 1 are stored in the LMFDB.
- If L has class number 1 and $p \mid dL$, then

 $p \in \{2, 3, 5, 7, 11, 13, 17, 23\}$

and structure of L_p can be explicitly determined using Sagemath.

- ► The lattices of class number 1 are stored in the LMFDB.
- If L has class number 1 and $p \mid dL$, then

$$p \in \{2, 3, 5, 7, 11, 13, 17, 23\}$$

and structure of L_p can be explicitly determined using Sagemath.

• Use variant of λ_p that deceases spinor class number.

- The lattices of class number 1 are stored in the LMFDB.
- If L has class number 1 and $p \mid dL$, then

$$p \in \{2, 3, 5, 7, 11, 13, 17, 23\}$$

and structure of L_p can be explicitly determined using Sagemath.

- Use variant of λ_p that deceases spinor class number.
- ► Use Algorithm with Nipp quaternary tables as input.

- The lattices of class number 1 are stored in the LMFDB.
- If L has class number 1 and $p \mid dL$, then

 $p \in \{2, 3, 5, 7, 11, 13, 17, 23\}$

and structure of L_p can be explicitly determined using Sagemath.

- Use variant of λ_p that deceases spinor class number.
- ► Use Algorithm with Nipp quaternary tables as input.
- ► Explicit computation of genus and spinor genus using Magma.

An Open Question:

Can all of the above classifications be extended to primitive representations? That is, when does

$$a \in q(gen(L)) \iff a \in q(spn(L)) \iff a \in q(L)$$

hold, and when does it fail? And why...and how badly?

The Inhomogeneous Case

For $f(\vec{x}) = q(\vec{x}) + \ell(\vec{x})$ inhomogeneous,

$$f(x_1,...,x_n)=a$$

has a solution, if and only if

$$a \in q(v+L)$$

where v + L is a **lattice coset** for $v \in \mathbb{Q}L$.

Theorem (Chan, Ricci, 2015)

Under certain arithmetic conditions, there are only finitely many equivalence classes of v + L for which

$$a \in q(gen(v+L)) \iff a \in q(v+L)$$

An Open Question:

Under what conditions does

$$a \in q(gen(v + L)) \iff a \in q(spn(v + L)) \iff a \in q(v + L)$$

fail, and why, and how badly?

Thank You!