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A rational polynomial f (x1, ..., xn) represents an integer a if

f (x1, ..., xn) = a

has a solution with x1, ..., xn integers.

The Representation Problem

Can we determine the set of all integers represented by f ?
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Hilbert’s 10th Problem, 1900

To devise a process according to which it can be determined in a
finite number of operations whether a given Diophantine equation
is solvable in rational integers.

Matiyasevich (1970) → no general solution exists.
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Theorem (Siegel, 1972)

For f quadratic, there exists a number C depending on a and f ,
such that if f (x1, ..., xn) = a has an integer solution, then it must
have one with

max
i≤i≤a

| xi |≤ C .

tl;dr → it’s possible, but totally impractical.
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Theorem (Hasse, 1920)

For f quadratic, the equation

f (x1, ..., xn) = a

has a rational solution if and only if has a solution over Qp for
every prime p, and over R.

→ Local-Global Principle
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Example 1:

Let f be the quadratic equation

f (x , y) = x2 + 11y2.

Then (
1

2

)2

+ 11

(
1

2

)2

=
12

4
= 3

and (
4

3

)2

+ 11

(
1

3

)2

=
27

9
= 3

but clearly f (x , y) = 3 has no integral solution.
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The Big Question:

To what extent does an integral local-global principle hold? When
does it fail? And why? And how badly?
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The General Setup

A quadratic polynomial f (~x) can be written as

f (~x) = q(~x) + `(~x) + c

where

I q is a homogeneous quadratic.

I ` is a homogeneous linear.

I c is a constant.
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The Homogeneous Case

For f (~x) = q(~x) homogeneous (positive definite), define

L = (Zn, q).

Then L is a quadratic lattice, and

q(L) = {a ∈ N : f (x1, ..., xn) = a has a solution in Zn}.

For p prime, define the local lattice as

Lp = L⊗Z Zp

and q(Lp) accordingly.
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For a quadratic lattice L = (Zn, q) and V = QL,

I the class of L is given by

cls(L) = O(V ) · L,

I the spinor genus of L is given by

spn(L) = O+(V )O ′A(L) · L,

where O ′(Vp) is the kernel of the spinor norm map, θ,

I the genus of L is given by

gen(L) = OA(V ) · L.
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For a quadratic lattice L = (Zn, q) and V = QL,

I the class of L is given by

cls(L) = O(V ) · L = {M ⊆ V : M ∼= L},

I the spinor genus of L is given by

spn(L) = O+(V )O ′A(L) · L,

where O ′(Vp) is the kernel of the spinor norm map, θ,

I the genus of L is given by

gen(L) = OA(V ) · L = {M ⊆ V : Mp
∼= Lp for all p}.

10 / 39



Similarly to q(L), define

I q(spn(L))= the set of integers represented by M ∈ spn(L).

I q(gen(L))= the set of integers represented by M ∈ gen(L).

A nice integral local global principle would look like

“a ∈ q(gen(L))⇐⇒ a ∈ q(L)”

...but that would be incorrect (recall example 1).
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Example 2:

Let L be the lattice with quadratic map

q(x , y , z) = x2 + y2 + z2

then
q(L) = {n ∈ N : n 6= 4a(8b + 7) for a, b ∈ Z}.

Here,
gen(L) = spn(L) = cls(L)

so clearly
q(gen(L)) = q(L).
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The Big Question:

Under what conditions does

q(gen(L)) = q(L)

hold?

And if it fails, why, and where, and how badly?
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Theorem (Kloosterman, 1926, Tartakowsky, 1929)

For positive definite L with rk(L) ≥ 4 then

a ∈ gen(L)⇐⇒ a ∈ q(L)

provided that a� 0 (and ps - a for p anisotropic when n = 4).

I Hsia, Kneser Kitaoka (1977): Gave computable constant

a ∈ gen(L)⇐⇒ a ∈ q(L) if a� C .

I Icaza (1999): Made C effective.
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Theorem (Duke, Schulze-Pillot, 1990)

For positive definite L with rk(L) = 3,

a ∈∗ q(spn(L))⇐⇒ a ∈ q(L)

provided that a� 0.

15 / 39



What might the genus look like?

Class Number One Spinor-Class Number One

Single Spinor Genus Worst Case Scenario
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Theorem (Earnest, Hsia, 1991)

For a positive-definite lattice L with rank n ≥ 5,

gen(L) = cls(L)⇐⇒ spn(L) = cls(L)

Class Number One Spinor-Class Number One
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Goal 1:

To classify all lattices which are regular, that is

q(gen(L)) = q(L),

and spinor regular, that is,

q(spn(L)) = q(L).
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When rk(L) ≥ 4, there are infinitely many regular forms.
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Theorem (Jagy, Kaplansky, Schiemann, 1997)

There are at most 913 regular ternary lattices, that is, lattices for
which

q(gen(L)) = q(L).

I Jagy, Kaplansky, Schiemann, 1997: Confirmed 891 of them to
be regular.

I Oh, 2011: Confirmed 8 more on the list.

I Lemke Oliver, 2015: Confirmed remaining 14 assuming GRH.
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Theorem (Jagy, 2004)

There are 29 spinor regular ternary lattices which aren’t regular,
that is, lattices for which

q(gen(L)) 6= q(spn(L)) = q(L).

for which dL < 575, 000.

Theorem (Earnest, H-, 2017)

Jagy’s list is complete.
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The Watson Transformation

For an odd prime p and

Lp ∼= 〈a, pβb, pγc〉

with a, b, c ∈ Z×p and β ≤ γ, define

(λp(L))p =


〈a, b, pγ−2c〉 if β = 0

〈b, pβ−1a, pγ−1c〉 if β = 1

〈a, pβ−2b, pγ−2c〉 if β ≥ 2.

Two key observations:

I For q 6= p, (λp(L))q = Luq for u ∈ Z×q .

I ordp(dλp(L)) = ordp(dL)− 1, 2, 4
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The Preservation of Regularity

A lattice L is said to behave well if

2p2 - dL and L is not split by H

Theorem (Chan, Earnest, 2004)

For spinor regular lattice L,

I If L behaves well at every prime then L is regular.

I If ordp(dL) ≥ rp then L does not behave well.

I If L does not behave well, then λp(L) is spinor regular.

I There exists L′ with ordp(dL′) = ordp(dL) and L′ behaves well
at all q 6= p.
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The Reduction

Suppose L is spinor regular and

dL = paa1 · · · p
ak
k

For each pi replace L with L′, then either

L′ behaves well at pi =⇒ L′ is regular

or

L′ not behaves well at pi =⇒ λpi (L
′) is spinor regular

...

=⇒ λδpi (L
′) is regular

Therefore,
pi ∈ {2, 3, 5, 7, 11, 13, 17, 23}
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The Reduction

For any odd pair, p · q, do the same trick then

p · q ∈ {3 · 5, 3 · 7, 3 · 11, 3 · 13, 5 · 7, 11 · 13}

and any triple must be of the form

2 · p · q

with p · q coming from above.
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The “Skip 4” Method

Lemma

For a prime p with t > rp and gcd(p,m) = 1, if

ptm, pt+1m, pt+2m and, pt+3m

are not regular or spinor regular discriminants, then

pt0m

is not a spinor regular discriminant for any t0 > t.

26 / 39



Discriminant Elimination

Suppose L is spinor regular but not regular with dL = 2k · 17m, and

L17 ∼= 〈a, 17βb, 17γc〉.

If β + γ > 2 then (
λδ17(L)

)
17

= 〈a, 17β
′
b, 17γ

′
c〉

is spinor regular where β′ + γ′ = 1, 2.

→ appeal to JKS list of 913.
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Discriminant Elimination

Suppose L is spinor regular but not regular with dL = 3k · 7m.

3k · 7m 7 72 73 74 75 76

3 dr dr - - - -
32 dr dr - - - -
33 dr dr - - - *
34 - - - - * *
35 - - - * * *
36 - - - * * *
37 - - * * * *

dr = discriminant of a regular form
* = product greater than 575,000
r3 = 5
r7 = 2
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Goal 2:

To classify all lattices with class number 1, that is,

gen(L) = cls(L),

and spinor class number 1, that is,

spn(L) = gen(L).
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Theorem (Kirshmer, Lorch, 2013)

An enumeration of all positive definite L with

gen(L) = spn(L) = cls(L),

that is, L has class number 1.
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Theorem (Earnest, H-, 2017)

There are 27 ternary forms, for which

gen(L) 6= spn(L) = cls(L),

that is, L has spinor class number 1, but L has class number
greater than 1.
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Theorem (Earnest, H-, 2018)

There is only one quaternary form,

q(x , y , z ,w) = x2 + xy + 7y2 + 3z2 + 3zw + 3w2,

which has spinor class number 1, but class number greater than 1.
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Algorithm (Earnest, Nipp, 1991)

INPUT: A prime p and a lattice discriminant D.
OUTPUT: List of isometry class representatives for lattices

with discriminant p2D.

1 Let P be the set of all matrices

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 p

 ,


1 0 0 0
0 1 0 0
0 0 p a
0 0 0 1

 ,


1 0 0 0
0 p a b
0 0 1 a
0 0 0 1

 ,


p a b c
0 1 0 0
0 0 1 a
0 0 0 1



where a, b, c < p non-negative integers.

2 For A ∈ D a set of representative lattices of discriminant D,
and for P ∈ P, compute

PtAP.

3 Reduce the set of all PtAP up to isometry.
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The Computational Tools

I The lattices of class number 1 are stored in the LMFDB.

I If L has class number 1 and p | dL, then

p ∈ {2, 3, 5, 7, 11, 13, 17, 23}

and structure of Lp can be explicitly determined using
Sagemath.

I Use variant of λp that deceases spinor class number.

I Use Algorithm with Nipp quaternary tables as input.

I Explicit computation of genus and spinor genus using Magma.
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An Open Question:

Can all of the above classifications be extended to primitive
representations? That is, when does

a ∈∗ q(gen(L))⇐⇒ a ∈∗ q(spn(L))⇐⇒ a ∈∗ q(L)

hold, and when does it fail? And why...and how badly?
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The Inhomogeneous Case

For f (~x) = q(~x) + `(~x) inhomogeneous,

f (x1, ..., xn) = a

has a solution, if and only if

a ∈ q(v + L)

where v + L is a lattice coset for v ∈ QL.
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Theorem (Chan, Ricci, 2015)

Under certain arithmetic conditions, there are only finitely many
equivalence classes of v + L for which

a ∈ q(gen(v + L))⇐⇒ a ∈ q(v + L)
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An Open Question:

Under what conditions does

a ∈ q(gen(v + L))⇐⇒ a ∈ q(spn(v + L))⇐⇒ a ∈ q(v + L)

fail, and why, and how badly?
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Thank You!
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